TYPE: Tilt rotor transport aircraft.

POWERPLANTS: Two 4590kW (6150shp) Allison T406-AD-400 turboshafts driving three bladed proprotors.

PERFORMANCE: Max cruising speed in aeroplane mode 582km/h (314kt), at sea level in helicopter mode 185km/h (100kt). Service ceiling 26,000ft. Takeoff run in short takeoff mode less than 150m (500ft). Ferry range 3890km (2100nm). Range with a 5445kg (12,000lb) payload and vertical takeoff 2225km (1200nm). Range with a 9075kg (20,000lb) payload and short takeoff 3335km (1800nm).

WEIGHTS: Empty equipped 14,463kg (31,886lb), normal mission takeoff weight for a vertical takeoff 21,545kg (47,500lb), normal mission takeoff weight with short takeoff 24,947kg (55,000lb), max takeoff with short takeoff for self ferry 27,442kg (60,500lb).

DIMENSIONS: Prop rotor diameter 11.58m (38ft Oin), wing span including nacelles 15.52m (50ft 11 in), fuselage length excluding probe 17.47m (57ft 4in), height overall nacelles vertical 6.90m (22ft 8in), height at top of tail fins 5.28m (17ft 4in). Proprotor disc area each 105.4m2 (1134sq ft), wing area 35.49m2 (392.0sq ft).

ACCOMMODATION: Flightcrew of two plus loadmaster/crew chief. Seating for up to 24 fully combat equipped troops in main cabin.

ARMAMENT: None, although special mission aircraft would be armed.


HISTORY: Often delayed and criticised as overweight and overpriced, the revolutionary V-22 nevertheless is set to become the first operational tilt rotor aircraft in the world.
Development of the Osprey dates back to the early 1980s' joint services program to develop a tilt rotor transport based on the successful Bell/NASA XV-15 demonstrator. The US Navy awarded a teaming of Bell and Boeing an initial development contract in April 1983, while an order for six flying prototypes (later reduced to five) was signed in May 1986. First flight was on March 19 1989.
Since that time the Osprey program has suffered its share of problems, with two of the prototypes crashing, planned production orders reduced and the whole program coming close to cancellation in 1992. Construction of four production standard V-22s is now underway, and these will be evaluated from 1998 against conventional helicopters to meet the USMC's CH-46 replacement requirement. However, IOC for the first of the Marines MV-22s is still planned for 1998. Marines support for the Osprey remains steadfast because of the aircraft's ability to perform all the missions a helicopter can, yet it can cruise at twice the speed and carry twice the payload.
The V-22 features two Allison T400 turboshafts (with FADEC) mounted in tilting nacelles. The engines are also linked via a crossshaft that allows both proprotors to be powered in the event of an engine failure. Other features include 59% composite construction by weight, fly-by-wire, and EFIS while the wings swivel to be parallel to the fuselage for stowage on ships.
Other than the USMC's MV-22s, other planned Osprey variants include the USAF's CV-22 special missions aircraft and the USN's HV-22 Combat SAR HH-3 replacement.